基础数学-三角函数
基础数学-三角函数
诱导公式
公式一 | 公式二 |
---|---|
sin(2kπ+α)=sin α cos(2kπ+α)=cos α tan(2kπ+α)=tan α cot(2kπ+α)=cot α sec(2kπ+α)=sec α csc(2kπ+α)=csc α | sin(π+α)=-sin α cos(π+α)=-cos α tan(π+α)=tan α cot(π+α)=cot α sec(π+α)=-sec α csc(π+α)=-csc α |
公式三 | 公式四 |
sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α cot(-α)=-cot α sec(-α)=sec α csc(-α)=-csc α | sin(π-α)=sin α cos(π-α)=-cos α tan(π-α)=-tan α cot(π-α)=-cot α sec(π-α)=-sec α csc(π-α)=csc α |
公式五 | 公式六 |
sin(α-π)=-sin α cos(α-π)=-cos α tan(α-π)=tan α cot(α-π)=cot α sec(α-π)=-sec α csc(α-π)=-csc α | sin(2π-α)=-sin α cos(2π-α)=cos α tan(2π-α)=-tan α cot(2π-α)=-cot α sec(2π-α)=sec α csc(2π-α)=-csc α |
公式七 | 公式八 |
sin(π/2+α)=cosα cos(π/2+α)=−sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα | sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα |
公式九 | 公式十 |
sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα | sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα |
倍角公式
\(\begin{aligned} \sin 2 \alpha &=2 \sin \alpha \cdot \cos \alpha \\ \cos 2 \alpha &=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha \\ \tan 2 \alpha &=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha} \end{aligned}\)
半角公式
\(\sin ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{2}\) \(\cos ^{2} \frac{\alpha}{2}=\frac{1+\cos \alpha}{2}\) \(\tan ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{1+\cos \alpha}\) \(\tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha}=\frac{1-\cos \alpha}{\sin \alpha}=\csc \alpha-\cot \alpha\) \(\cot \frac{\alpha}{2}=\frac{\sin \alpha}{1-\cos \alpha}=\frac{1+\cos \alpha}{\sin \alpha}=\csc \alpha+\cot \alpha\)
和角公式
\(\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta\) \(\sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta\) \(\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta\) \(\cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta\) \(\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta}\) \(\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \beta}\)
积化和差
\(\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]\) \(\cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]\) \(\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)]\) \(\sin \alpha \sin \beta=-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)]\)
和差化积
\(\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \cdots \cdots(1)\) \(\sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \ldots \ldots\) \(\cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \cdots \cdots(3)\) \(\cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \ldots \ldots(4)\) \(\tan \alpha+\tan \beta=\frac{\sin (\alpha+\beta)}{\cos \alpha \cos \beta} \cdots \cdots(5)\) \(\tan \alpha-\tan \beta=\frac{\sin (\alpha-\beta)}{\cos \alpha \cos \beta} \cdots \cdots(6)\) \(\cot \alpha+\cot \beta=\frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta} \cdots \cdots(7)\) \(\cot \alpha-\cot \beta=-\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta} \cdots \cdots(8)\) \(\tan \alpha+\cot \beta=\frac{\cos (\alpha-\beta)}{\cos \alpha \sin \beta} \cdots \cdots(9)\) \(\tan \alpha-\cot \beta=-\frac{\cos (\alpha+\beta)}{\cos \alpha \sin \beta} \cdots \cdots(10)\)
万能公式
\(\sin a=\frac{2 \tan \frac{a}{2}}{1+\tan ^{2} \frac{a}{2}}\) \(\cos a=\frac{1-\tan ^{2} \frac{a}{2}}{1+\tan ^{2} \frac{a}{2}}\) \(\tan a=\frac{2 \tan \frac{a}{2}}{1-\tan ^{2} \frac{a}{2}}\)
\(\cot \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}\) \(\sec \alpha=\frac{1+\tan ^{2} \frac{\alpha}{2}}{1-\tan ^{2} \frac{\alpha}{2}}\) \(\csc \alpha=\frac{1+\tan ^{2} \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}\)