基础数学-三角函数

基础数学-三角函数

诱导公式

公式一公式二
sin(2kπ+α)=sin α
cos(2kπ+α)=cos α
tan(2kπ+α)=tan α
cot(2kπ+α)=cot α
sec(2kπ+α)=sec α
csc(2kπ+α)=csc α
sin(π+α)=-sin α
cos(π+α)=-cos α
tan(π+α)=tan α
cot(π+α)=cot α
sec(π+α)=-sec α
csc(π+α)=-csc α
公式三公式四
sin(-α)=-sin α
cos(-α)=cos α
tan(-α)=-tan α
cot(-α)=-cot α
sec(-α)=sec α
csc(-α)=-csc α
sin(π-α)=sin α
cos(π-α)=-cos α
tan(π-α)=-tan α
cot(π-α)=-cot α
sec(π-α)=-sec α
csc(π-α)=csc α
公式五公式六
sin(α-π)=-sin α
cos(α-π)=-cos α
tan(α-π)=tan α
cot(α-π)=cot α
sec(α-π)=-sec α
csc(α-π)=-csc α
sin(2π-α)=-sin α
cos(2π-α)=cos α
tan(2π-α)=-tan α
cot(2π-α)=-cot α
sec(2π-α)=sec α
csc(2π-α)=-csc α
公式七公式八
sin(π/2+α)=cosα
cos(π/2+α)=−sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
公式九公式十
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sec(3π/2+α)=cscα
csc(3π/2+α)=-secα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sec(3π/2-α)=-cscα
csc(3π/2-α)=-secα

倍角公式

\(\begin{aligned} \sin 2 \alpha &=2 \sin \alpha \cdot \cos \alpha \\ \cos 2 \alpha &=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha \\ \tan 2 \alpha &=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha} \end{aligned}\)

半角公式

\(\sin ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{2}\) \(\cos ^{2} \frac{\alpha}{2}=\frac{1+\cos \alpha}{2}\) \(\tan ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{1+\cos \alpha}\) \(\tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha}=\frac{1-\cos \alpha}{\sin \alpha}=\csc \alpha-\cot \alpha\) \(\cot \frac{\alpha}{2}=\frac{\sin \alpha}{1-\cos \alpha}=\frac{1+\cos \alpha}{\sin \alpha}=\csc \alpha+\cot \alpha\)

和角公式

\(\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta\) \(\sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta\) \(\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta\) \(\cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta\) \(\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta}\) \(\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \beta}\)

积化和差

\(\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]\) \(\cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]\) \(\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)]\) \(\sin \alpha \sin \beta=-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)]\)

和差化积

\(\sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \cdots \cdots(1)\) \(\sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \ldots \ldots\) \(\cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \cdots \cdots(3)\) \(\cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \ldots \ldots(4)\) \(\tan \alpha+\tan \beta=\frac{\sin (\alpha+\beta)}{\cos \alpha \cos \beta} \cdots \cdots(5)\) \(\tan \alpha-\tan \beta=\frac{\sin (\alpha-\beta)}{\cos \alpha \cos \beta} \cdots \cdots(6)\) \(\cot \alpha+\cot \beta=\frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta} \cdots \cdots(7)\) \(\cot \alpha-\cot \beta=-\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta} \cdots \cdots(8)\) \(\tan \alpha+\cot \beta=\frac{\cos (\alpha-\beta)}{\cos \alpha \sin \beta} \cdots \cdots(9)\) \(\tan \alpha-\cot \beta=-\frac{\cos (\alpha+\beta)}{\cos \alpha \sin \beta} \cdots \cdots(10)\)

万能公式

\(\sin a=\frac{2 \tan \frac{a}{2}}{1+\tan ^{2} \frac{a}{2}}\) \(\cos a=\frac{1-\tan ^{2} \frac{a}{2}}{1+\tan ^{2} \frac{a}{2}}\) \(\tan a=\frac{2 \tan \frac{a}{2}}{1-\tan ^{2} \frac{a}{2}}\)

\(\cot \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}\) \(\sec \alpha=\frac{1+\tan ^{2} \frac{\alpha}{2}}{1-\tan ^{2} \frac{\alpha}{2}}\) \(\csc \alpha=\frac{1+\tan ^{2} \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}\)