高等数学-一元微分学-可导函数的中值定理习题

高等数学-一元微分学-可导函数的中值定理习题

考察中值定理的定义

考察罗尔定理的定义

例1
image-20200419191223856
image-20200419191114818

考察拉格朗日中值定理定义

例1
image-20200419194020246
image-20200419194350114
例2
image-20200419195057298
image-20200419195136725
image-20200419195152638
例3
image-20200420195449158
image-20200420195433746

其实这道题就是求极限,没考察中值定理

例4
image-20200420224321957
image-20200420224306297
例5
image-20200421151721709
image-20200421151648390
image-20200421151707394
例6
image-20200421194140003
image-20200421194123394
例7
image-20200421210050736
image-20200421210034865

考察泰勒定理

例1
image-20200419200751777
image-20200419200728386
例2
image-20200420110500021
image-20200420110442108

分母也可使用泰勒展开替换

例3
image-20200420111856720
image-20200420111915216
image-20200420111931538

其实此题不用泰勒展开,多次使用洛必达法则,也可求出a和b,而且更简单

例4
image-20200420115526420
image-20200420115505603
例5
image-20200421210709905
image-20200421210619877
image-20200421210647408

求证存在\(\xi\)使等式成立

求证\(f^{(n)}(\xi)=0\)

一般会用到罗尔定理

找多个相同值点,多次使用罗尔定理

例1
image-20200417134624096
image-20200417134756621

本题使用2次零点定理+罗尔定理证明

例2
image-20200417135300981
image-20200417140421456
image-20200417140650913
image-20200417141636783

介值定理+罗尔定理得两个等值点,再用一次罗尔定理证明 函数值相加要想到用介值定理

例3
image-20200417150456153
image-20200417150429213
例4
image-20200419225623647
image-20200419225701750
例5
image-20200420095404906
image-20200420095349655

求证仅含\(\xi\)的等式

即求证仅包含\(\xi\)不包含其他字母的等式

一般方法包括积分还原法微分方程法

微分中值定理证明题中构造辅助函数的方法

积分还原法求证仅\(\xi\)的等式

左侧可化为\(\frac{f^{\prime}(x)}{f(x)}=[\ln f(x)]^{\prime}\)的式子

一般要求要证的式子包含一个函数及其导数(差一阶),有些可以变换到求证\(\frac{f^{\prime}(x)}{f(x)}=\cdot \cdot \cdot\)的形式,我们可以将左右都看作是函数的导数。

\(\frac{f^{\prime}(x)}{f(x)}=[\ln f(x)]^{\prime}\),即证\([\ln f(x)]^{\prime}-[balabala]^{\prime}=0\), 即证\(\{\ln [f(x) \cdot balabala] \}^{\prime}=0\)

则我们一般可以取辅助函数\(\phi (x) = \ln [f(x) \cdot balabala\)来求证。

例1
image-20200417173651484
image-20200417173758475
image-20200417173938459
例2
image-20200417195732919
image-20200417195827982
例3
image-20200417200632830
image-20200417200930439
image-20200417201031243
image-20200417201129388
例4
image-20200420091719475
image-20200420091737995
例5
image-20200420100144941
image-20200420100203236
image-20200420100219163
例6
image-20200421120216621
image-20200421120237517
例7
image-20200421162121240
image-20200421162134466
image-20200421162101282
例8
image-20200421163921890
image-20200421163905819
例9
image-20200422112237034
image-20200422112202616
例10
image-20200422113633153
image-20200422113714619
image-20200422113734732
找其他原函数

变为式子=0的形式,式子左侧作为函数,试着积分,可解的的话,就可作为辅助函数。

例1
image-20200421155838520
image-20200421155825050
例2
image-20200421171654698
image-20200421171619179

微分方程法

将要证的方程看作微分方程,解出函数的形式,作为辅助函数。

例1
image-20200420102643447
image-20200420102659501
例2
image-20200421154812481
image-20200421154745450

求证含\(\xi\)和a与b的等式

这里a,b指区间端点,一般是在[a,b]上连续,在(a,b)上可导

a,b与\(\xi\)可分离

若a,b侧有如下形式,则使用对应的方法求解

批注 2020-04-17 201716
例1
image-20200417202303061
image-20200417202354879
例2
image-20200417202625491
image-20200417204213695

a,b与\(\xi\)不可分离

\(\xi\)变为x,去分母,移项,变为式子=0, 将其看作(?)'=0,以?部分作辅助函数来证明

例1
image-20200417204924273
image-20200417205042765
image-20200417205218979
例2
image-20200421163135029
image-20200421163036916
image-20200421163100435

求证存在\(\xi\)\(\eta\)使等式成立

仅有\(f^{\prime}(\xi), f^{\prime}(\eta)\)

方法是找3个点,使用2次拉格朗日中值定理

例1
image-20200418142509820
image-20200418143040335
image-20200418143150291
例2
image-20200418143719247
image-20200418143808660
image-20200418143844591
例3
image-20200421191400095
image-20200421191417002

\(\xi,\eta\)复杂度不同

方法:留下偏复杂一部分,凑成某式的导数,用拉格朗日中值定理;或者凑成连个两个导数的比值,用柯西中值定理。

image-20200418144323608
例1
image-20200418144520471
image-20200418144729966
image-20200418144833788
例2
image-20200418144932552
image-20200418145022666
image-20200418145124271
image-20200418145212288
例3
image-20200420105317475
image-20200420104915669
例4
image-20200421193128025

image-20200421193027903image-20200421193049924

例5

这题第二问要想到使用第一问的结论

image-20200422115052225
image-20200422115033884

求证存在\(\epsilon,\xi,\eta\)使等式成立

例1
image-20200421143911960
image-20200421143943207

拉格朗日中值定理使用

出现\(f(b)-f(a)\)想到使用拉格朗日中值定理

例1
image-20200418152102250
例2
image-20200418152203402
例3
image-20200418152329175
image-20200418152406592

出现\(f(a), f(c), f(b)\) 想到使用2次拉格朗日中值定理

例1
image-20200418152916469
image-20200418155808392
例2
image-20200418160135906
image-20200418160302541
image-20200418160344460
例3
image-20200419185922277
image-20200419185949907

不等式的证明

例1
image-20200421204048417
image-20200421204128250

其实设\(f(x)=x,g(x)=ln(x)\)用柯西中值定理来做也简单。