高等数学-一元积分学-不定积分

高等数学-一元积分学-不定积分

求不定积分

换元积分法

第一类换元积分法

例1
image-20200422205016069
例2
image-20200422205108701
image-20200422205130343
例3
image-20200422205154594
image-20200422205216680
例4
image-20200422205243332
例5
image-20200422205329766
例6
image-20200422210256137
image-20200422210326399
例7
image-20200422210354812
例8
image-20200422210421022
例9
image-20200422210446108
例10
image-20200422210531099
例11
image-20200425130701361
image-20200425130801763
例12
image-20200425131233607
image-20200425131254167
image-20200425131314711
image-20200425145018590
例13
image-20200425144943007
例14
image-20200426112941286
例15
image-20200426113333046
例16
image-20200426113954477
例17
image-20200426121016605
例18
image-20200426152532636
例19
image-20200426154129241
例20
image-20200426154522051
例21
image-20200426175857969
例22
image-20200426180639081
例23
image-20200426215400625

\(=-2\tan \frac{\sqrt{x}}{2} + C\)

此题后面中间也可以使用1的代换,三角半角公式来做

例24
image-20200426215929000
image-20200426215943472
例25
image-20200426221819772
例26
image-20200426222544861
image-20200426222633675
例27

此题需要功底

image-20200426225326669
image-20200426225305599
例28
image-20200426231808485
例29

此题需要功底

image-20200426233241569
例30
image-20200427094002282
例31
image-20200427101700720
image-20200427101721015
例32
image-20200427103040941
例33
image-20200427103418076

例34
image-20200427113729819
例35
image-20200427134314806
例36
image-20200427143724056
例37
image-20200427144856302
image-20200427144914187
例38
image-20200427150051741
例39
image-20200427151301085
例40
image-20200427182002433
image-20200427182034663
例41
image-20200427194005155
例42
image-20200427194241730
例43
image-20200427194513636
image-20200427194456603
例44
image-20200427195230243
image-20200427195318107
例45
image-20200427200900183
image-20200427200923247
例46

第一换元积分,然后分部积分

image-20200427204245466
例47

指数的这种变换要能想得到

image-20200427205433865
image-20200427205600729
例48
image-20200428154639184
image-20200428154620320
例49
image-20200428163059455
例50
image-20200428191259147
image-20200428191242216
例51
image-20200428204908077
image-20200428204851025

第二类换元积分法

无理转有理(不一定需要)
例1
image-20200423103451569
例2
image-20200423103537996
image-20200423103552076
例3
image-20200423103703554
例4
image-20200426120907962
例5
image-20200426172615885
image-20200426172551800
例6
image-20200427162111494
image-20200427162152965
image-20200427162230460
例7
image-20200427181500688
例8

第二换元积分,然后有理分式积分

image-20200427203505684
image-20200427203532759
例9
image-20200428144339374
image-20200428144325581
例10
image-20200428150900050
image-20200428150847346
平方和差转三角
例1
image-20200423103823600
image-20200423103911216
例2
image-20200423104018258
image-20200423104051839
例3
image-20200423104122464
image-20200423104156670
例4
image-20200426212005054
例5
image-20200426212329850
例6
image-20200426212822931
例7
image-20200426213429210
image-20200426213451207
例8
image-20200426234604161
例9
image-20200427143101393
例10
image-20200427155436670
例11
image-20200427202111805
image-20200427202128246
例12
image-20200428203120686
image-20200428203150312

分部积分法

幂函数*指数函数的积分\(\int x^{n} \cdot e^{x} d x\)

例1
image-20200423125054252
image-20200423125141452

幂函数*对数函数的积分\(\int x^{n} \cdot \ln x d x\)

例1
image-20200423125318620
image-20200423125353655
例2

第一类换元积分+幂函数对数函数的积分

image-20200426160132650
例3
image-20200427115306019

幂函数*三角函数的积分\(\int x^{n} \cdot 三角函数 d x\)

这里的三角函数,对于正弦余弦,要求变到1次幂;对于正切/余切/sec/csc,要求是2次方

例1
image-20200423133028057
image-20200423133107316
image-20200423133144411
例2
image-20200423133208577
image-20200423133234297
例3
image-20200423170756173
例4
image-20200427175900925
image-20200427175927104

幂函数*反三角函数的积分\(\int x^{n} \cdot 反三角函数 d x\)

例1
image-20200423171543388
image-20200423180217655
image-20200423180256448
例2
image-20200426164457497
image-20200426164532117
例3
image-20200427174959800
例4
image-20200428114813373

指数函数*正余弦函数的积分\(\int e^{a x} \times\left\{\begin{array}{l}\cos b x \\ \sin b x\end{array} d x\right.\)

例1
image-20200426160802280
image-20200426162108438

指数函数*反三角函数的积分

例1

指数函数*反三角函数,并与简单无理式复合。

image-20200425162238638
image-20200425162342599

sec或csc的n次幂的积分(奇次幂)

例1

sec或csc非奇数次幂的例子,直接计算

image-20200423232938283
例2

非奇数次幂的例子,直接计算

image-20200423233242199
例3
image-20200423233501843
image-20200423233608477

对数复合三角的积分

例1
image-20200428141639126
image-20200428141546583
image-20200428141605349

有理分式积分

有理分式\(\int R(x) d x\)的积分

其中\(R(x)=\frac{P(x)}{a(x)}\),而P(x)和Q(x)为多项式

如果P的次数小于于Q的次数,称其为真分式; 如果P的次数大于等于Q的次数,称其为假分式

为真分式

如果\(R(x)\)为真分式,R(x)分子不变,分母因式分解;然后拆成部分和的形式。

例1

image-20200424111143062

例2

image-20200424111253059

例3

image-20200424111345595

例4

image-20200424112731412

例5
image-20200424115646279
例6
image-20200424115715811
例7
image-20200424115852914
image-20200424115908681
例8
image-20200424120031138
image-20200424120057116
例9
image-20200425210849272
image-20200425210919316
例10
image-20200426173216693
image-20200426173152116
例11
image-20200426174202448
例12
image-20200426175744688
image-20200426175728081
例13
image-20200426231339243
image-20200426231327752
例14
image-20200427112938386
例15
image-20200427114430718
例16
image-20200427154700868
image-20200427154637520
例17
image-20200428171757828
image-20200428171943546

上面是换元法的答案,下面有理分式分解方法,没找到错在哪里

image-20200428172245101
\(R(x)\)为假分式

如果\(R(x)\)为假分式,要先转换成: 多项式+真分式

例1
image-20200427210858636
image-20200427210842090

三角有理分式的积分

关于sinx,cosx的有理分式的积分,“万能代换”可解决这类间题。但随之而来的是一串复杂的计算,考研至今未见到过非要用它才能求这种不定积分的题对于这类题,一般采用下列办法处理:①化成同角;②尽量约分;③分母化成单项式; ④利用\(1=\sin ^{2} x+\cos ^{2} x\)\(1=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}\)等等。由于三角公式众多,化简时有些技巧,考研中这类题出得很少,但也曾考过

例1
image-20200425150447980
image-20200425150502772
image-20200425150529966
例2
image-20200427135923799
例3
image-20200427181023135
例4
image-20200427193735595
例5
image-20200427230114126
image-20200427230100156

注:其中 \(\quad \int \frac{1}{1+\sin x} d x\) \(=\int \frac{1-\sin x}{1-\sin ^{2} x} d x\) \(=\int \frac{1}{\cos ^{2} x} d x-\int \frac{\sin x}{\cos ^{2} x} d x\) \(=\tan x+\int \frac{d \cos x}{\cos ^{2} x}\) \(=\tan x-\frac{1}{\cos x}+C\)

而结合万能公式和tan加法,又可化为\(\tan \left(\frac{x}{2}-\frac{\pi}{4}\right)+C\)

例6
image-20200427232807272
image-20200427232828202

用万能公式解了一次,答案不一样,暂时找不到错误在哪里:

image-20200427234209903
例7
image-20200427235913815
image-20200427235944240
例8
image-20200428104653509
image-20200428104631770

下面使用万能公式算了一遍,答案不一样,暂时找不到错在哪里:

image-20200428171324435
例9
image-20200428143408045
image-20200428143421195
例10
image-20200428193724034
例11
image-20200428200300390

和上一题比较,注意体会这类题型的灵活性

换元+分部积分+有理分式

例1

第二换元积分,分部积分

image-20200428120429968
image-20200428120446348
例2

第一换元积分,分部积分

image-20200428120815802
例3
image-20200428121807819
image-20200428121829361
例4
image-20200428204008861
image-20200428203957815

指数,有理分式,三角有理分式,简单无理式的混合或复合后的积分

例1

指数函数*反三角函数,并与简单无理式复合。

image-20200425162238638
image-20200425162342599
例2
image-20200425164527994
image-20200425164540995
image-20200425164556562
例3
image-20200425164832169
image-20200425164844465
例4

例5

第一换元法+分部积分

image-20200426183534552
image-20200426183559031
例6
image-20200427095304645
例7
image-20200427142302335
image-20200427142326820
例8
image-20200427192509791
image-20200427192532106
image-20200427192557501
例9
image-20200428110330723
image-20200428110242105
image-20200428110257490
例10

三角有理分式和幂函数混合

image-20200428111550983
image-20200428111524833
例11

无理式积分

image-20200428142539531
image-20200428142519874

求分段函数的不定积分

解题思路本题的被积函数为绝对值所表示,

第一步,应将它写成分段表达式,可知它是连续的; 第二步,将此分段函数按分段求其原函数,并使在分界点处接成连续,

再加C便可得不定积分

例1
image-20200424170943738
image-20200424171015081
例2
image-20200428191829102
image-20200428191812340

求带导数或带积分的不定积分

例1
image-20200426165344131
image-20200428191955630

比较不定积分的大小

例1
image-20200424181358154
image-20200424181431350