高等数学-一元积分学-定积分与反常积分
定积分与积分函数
求定积分
分部积分法求定积分
例1
image-20200505174539033
image-20200505174520659例2
image-20200505203737772
image-20200505203716425例3
image-20200505213436150
image-20200505213413514例4
image-20200509233644000
image-20200509233627415
image-20200509234405371例5
image-20200510013419787
image-20200510013359350例6
image-20200510133450231
image-20200510133334263例7
image-20200510134044574
image-20200510134017639
image-20200510134028330例8
image-20200510134425063
image-20200510134414384换元法求定积分
常规换元法
例1
image-20200501093018919例2
image-20200505120232614
image-20200505120213021例3
image-20200505173436928
image-20200505173420100例4
image-20200505174839095
image-20200505174820131例5
image-20200507205407235
image-20200507205342154
image-20200507205356908例6
image-20200509125408300
image-20200509125353858例7
image-20200509180150947
image-20200509180132634例8
image-20200509184235605
image-20200509184250679例9
image-20200509190730467
image-20200509190710787例10
image-20200509234556966
image-20200509234539465例11
image-20200510012658277
image-20200510012645336例12
image-20200510013936696
image-20200510013913701例13
image-20200510145312859
image-20200510145250432例14
image-20200510191658265
image-20200510191637402例15
image-20200802220310984解:换元法:,然后设求解
对调区间上下限的换元法
例1
image-20200507211013391
image-20200507210949950例2
image-20200430232945553例3
image-20200509185502121方法一:递推法
image-20200509185420222
image-20200509185442267方法二:对调区间上下限的换元
image-20200509185931338倒数的换元法
例1
image-20200510012310077
image-20200510012335401根据奇偶性和周期性求定积分
根据区间的对称性、函数的奇偶性求定积分;根据函数的周期性求定积分
例1
image-20200425195851248
image-20200425195907868例2
image-20200425200011429
image-20200425200042282例3
image-20200425200727286
image-20200425200912184
image-20200425201049310例4
image-20200501094621040周期函数,平移上下限后可以使用华里士公式
例5
image-20200505132218887
image-20200505132237187例6
image-20200505172159808
image-20200505172141865例7
image-20200505172713456
image-20200505172730735例8
image-20200505233148850
image-20200505233134121例9
image-20200506223622291
image-20200506223607048例10
image-20200507212530289
image-20200507212514834例11
image-20200508235203625
image-20200508235150535例12
image-20200509002557153
image-20200509002540513例13
image-20200509003149918
image-20200509003135070例14
image-20200509124036573
image-20200509124015453例15
image-20200509172725341
image-20200509172800420求分段函数的定积分
给f(x)为分段表达式,应按f(x)的分段,分段做定积分;由于积分的上限为x,所以应对x的范围作讨论才能选取分段
例1
image-20200424175709739
image-20200424175721802
image-20200424175735297
image-20200424175812220例2
image-20200424180355958例3
image-20200507204941040
image-20200507204923803例6
image-20200509004028743
image-20200509004044765求三角函数的定积分
例1
image-20200430235449871
image-20200430235511346此题是的推广
华里士公式: 即
例2
image-20200501092301923
image-20200501092336466例3
image-20200501092736324
image-20200501092808771例4
image-20200505115522887
image-20200505115456162例5
image-20200509175006406
image-20200509174953807例6
image-20200509175651332
image-20200509175631581例7
image-20200509183941294
image-20200509183920776求简单无理分式的定积分
定积分化简根式时要保留绝对值。(一般是三角替换的时候)
例1
image-20200425160649010
image-20200425160811054求含导数或变限函数的积分
带变限函数的积分有两种方法:可以化为2重积分,或者使用分部积分去掉一次积分
含导数的积分一般使用分部积分求解
例1
image-20200425170539258
image-20200425170735444例2


image-20200425171008232例3
image-20200507204158707
image-20200507204145929求带参带绝对值的定积分
例1
image-20200425204136708
image-20200425204327686根据积分确定函数
例1
image-20200425214251294
image-20200425214316718
image-20200425214345234例2
image-20200506224601222例3
image-20200509225659264
image-20200509225723752例4
image-20200509230510768
image-20200509230452964求变限积分函数
求变限积分
例1
image-20200428205626186
image-20200428205641229例2
image-20200507213233711
image-20200507213249176求含变限积分的极限
求极限
根据定积分定义求极限
分子齐次,分母齐次,使用定积分的定义来求极限。
分子或分母,有一个不齐,使用夹逼定理求极限
例1
image-20200429142647078
image-20200429142621656例2
image-20200505102931991例3
image-20200505110330164例4
image-20200505110921571
image-20200505111019103
image-20200505111036779求含定积分的极限
例1
image-20200504125839308
image-20200504125902625求含变限积分的极限
例1
image-20200429215012136
image-20200429220650314例2
image-20200429215935760
image-20200429220414426
image-20200429220538054例3
image-20200426111557065
image-20200426111619610变限积分求参数
例1
image-20200505230312876
image-20200505230254929变限积分函数求导数
例1
image-20200429215351533
image-20200429215514607例2
image-20200429215639710
image-20200429215728699
image-20200429215757984例3
image-20200505111703408
image-20200505111848595例4
image-20200505112312751
image-20200505112339949例5
image-20200505223848937
image-20200505223807075变限积分函数求最值
例1
image-20200510141142460
image-20200510141215381定积分与原函数的存在性判断
例1
image-20200424182040243
image-20200424182050910函数存在原函数的前提条件是要连续。虽然不连续,但是只有有限个间断点,这样的函数是可积的(可以拆成几个连续的区间)。是否可导可根据定义或者左右导数存在且相等来看。
证明题
求证存在使等式成立
零点定理求证存在使等式成立
例1
image-20200510221201914
image-20200510221255498
image-20200510221309501罗尔定理求证存在使等式成立
例1
image-20200511014833900
image-20200511014809787例2
image-20200511123840292
image-20200511123902861
image-20200511123917597泰勒公式证明存在使等式成立
例1
image-20200511111541173
image-20200511111554982
image-20200511111512554积分中值定理求证存在使等式成立
例1
image-20200430141326453
image-20200430141427456例2
image-20200511013829484
image-20200511013919605变限积分函数证存在使等式成立
注意,如果要证明的是开区间内存在点,使等式成立,则不能使用积分中值定理.积分中值定理的结论是闭区间内存在点,满足条件
要证明的是开区间内存在点,使等式成立,应设变限积分函数来证.
积分中值定理有开区间和闭区间两种题目,开区间的话用到的结论是积分中值定理的推广,要写过程,用拉格朗日证明,所以要写出变上限积分,在原函数之一的基础上进行拉格朗日证明,和拉格朗日一样最后取到开区间;闭区间的话就是积分中值定理本身,不用写出证明过程,但是本身证明用的是介值定理,所以积分中值定理本身是闭区间
问的是开区间不是拉格朗日就是罗尔,就看已知几个相等
例1
image-20200430174706147
image-20200430174749009例2
image-20200430174919420
image-20200430175356555
image-20200430175426160例3
image-20200504163758884例4
image-20200504164731885
image-20200504164804525变限积分及其导数的奇偶性、周期性
由F(x)的奇偶性,周期性推断∫(x)的相应性质,用到微分学的性质; 反过来,由f(x)的奇偶性、周期性,推断F(x)的相应性质,可能会想到用不定积分,但是不定积分只能用来作为运算,不能用来讨论性质,应该用变上限函数来表示f(x)的某个原函数,用它来讨论原函数的性质
结论:
f->F
奇函数的(变上限)积分是偶函数;偶函数仅当从0开始的(变上限)积分是奇函数。
F->f
原函数是奇函数,求导是偶函数;原函数是偶函数,求导是奇函数。
例1
image-20200424215428629
image-20200424215618577
image-20200424215700314例2
image-20200424223926507
image-20200424223950028例3
image-20200424225752880
image-20200424225852799
image-20200424225911997例4
image-20200427101432005
image-20200427101450255例5
image-20200504104940202例6
image-20200509000710875
image-20200509000737551
image-20200509000753598积分等式的证明
例1
image-20200510225004805
image-20200510224940666例2
image-20200510225603029
image-20200510225620713积分不等式的证明
积分的比较
例1
image-20200504143955475
image-20200504144013098例2
image-20200507223643082
image-20200507223628241变限积分函数单调性与单调区间的判断
一个带积分号的函数,和另一个不带积分号的函数的比较,有两种办法:
- 用积分中值定理,将有积分号的化为无积分号的
- 将没有积分号的套上积分号
例1
image-20200504110936361
image-20200504111046496例2
image-20200504124342111
image-20200504124357499积分不等式的证明
例1
image-20200504145425744
image-20200504150244730例2
image-20200504154100792
image-20200504154136239例3
image-20200504154759276
image-20200504154825522例4
image-20200504160007620
image-20200504160040511例5
image-20200504161121914例6
image-20200510232253632
image-20200510232231492例7
image-20200510234624546
image-20200510234640199例8
image-20200511100711240
image-20200511100733936零点问题
零点问题,或者方程根的讨论
与微分学中类似,定积分与变限积分中也有零点问题处理的办法
- 一是化成变限积分看成变限的函数,用微分学中讲到的办法
- 二是利用积分中值定理
例1
image-20200504162619158
image-20200504162750994例2
image-20200511103949174
image-20200511103919010反常积分
反常积分的识别
区间无限的反常积分:只要一看积分限有,便知这是无穷区间上的反常积分
无界函数的反常积分:般是看被积函数是否有使其分母为零的点。但这句话既不充分也不必要.
例1
image-20200502145214971例2
image-20200502154159635
image-20200502154359833反常积分的判敛及求解
通过计算来求解及判敛
例1
image-20200501120330982例2
image-20200501121826206例3
要想对无穷积分使用定积分在对称区间上的性质,首先要满足无穷积分收敛才行.
image-20200501144412584
image-20200501144608412例4
image-20200501154831152
image-20200501155011607例5
image-20200501164436569
image-20200501164507820例6
image-20200501165744990例7
image-20200501170807882
image-20200501170846361例8
image-20200502150424446
image-20200502150445088例9
image-20200502152321698
image-20200502152337084
image-20200502152401169例10
image-20200502152856398通过计算这两个积分可知都收敛,答案选A
例11
image-20200502164823294
image-20200502164928490例12
image-20200502165257454
image-20200502165332642
image-20200502165500948例13
image-20200507211941551
image-20200507211930458例14
image-20200507212202476
image-20200507212127935例15
image-20200510220037563
image-20200510220022094反常积分的非计算判敛方式(审敛)
例1
此题没弄懂.//TODO
image-20200502215006231
image-20200502215107748
image-20200502215343444例2
判别反常积分 的收敛性. 解 当 时 反常积分 收敛.
例3
判别反常积分 的收敛性. 解 所给反常积分收敛.(极限审敛法1)
例4
判别反常积分 的收敛性 所给反常积分发散.(极限审敛法 1)
例5
判别反常积分 的收敛性. 解 所给反常积分发散.(极限审敘法 1)
例6
判别反常积分 都是常数 a > 0) 的收敛性. 解 而 收敘. 收敛. 收敛
例7
判别反常积分 的收敛性. 解 是瑕点 :反常积分 发散. (极限审敛法2)
例8
例9
判别反常积分 的收敛性. 解 在0的右半邻域内无界 是瑕点 而 收敛, 收敛 也收敛
例10
image-20200505212923220
image-20200505212905286例11
首先是要审敛,要发现这是个反常积分。
这里有四种方法,换元法,分部积分法,分子有理化,1的代换。都可以做出来,亮瞎眼。
image-20200506221426667
image-20200506221400129
image-20200506221505554例12
image-20200507220002606
image-20200507220021255对泊松型积分和函数的求解
例1
image-20200501172046918例2
image-20200501172215649例3
image-20200501172300920
image-20200501172328633例4
求 解 由递推公式得:
例5
用函数表示积分
解
例6
image-20200507211455308
image-20200507211544804