高等数学-基础概念-函数与极限习题

高等数学-基础概念-函数与极限习题

首先判断未定式类型,使用对应的方法 无法根据未定式求解时,考虑根据定义来做,或者夹逼定理,泰勒展开等 对于含有绝对值的式子求极限,需要分类讨论

根据未定式的形式求极限

\(\frac{0}{0}\)型、\(\frac{\infty}{\infty}\)

等价无穷小求极限

例1

\(\lim _{x \rightarrow 0} \frac{e^{x}-e^{\ln (1+x)}}{x \arcsin 2 x}\)=?

答:

\(\frac{e^{x}-e^{\ln (1+x)}}{x+0} \frac{e^{x}}{x \arcsin 2 x}=\lim _{x \rightarrow 0} e^{\ln (1+x)} \cdot \frac{e^{x-\ln (1+x)}-1}{2 x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x-\ln (1+x)}-1}{2 x^{2}}\) \(=\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{2 x^{2}}=\lim _{x \rightarrow 0} \frac{1-\frac{1}{1+x}}{4 x}=\frac{1}{4}\)

例2
image-20200401180016813
image-20200401180054656
例3
image-20200402090331972
image-20200402090433834
例4
image-20200403111854513
image-20200403112000737
例5
image-20200403171516699
image-20200403171545204
例6
image-20200403172337378
image-20200403172416159
例7
image-20200409084345553

这里使用等价无穷小,也可以使用和差化积+泰勒展开

例8
image-20200409095405172
例9
image-20200409195127908
image-20200409195157677

根式有理化或因式分解求极限

目的是尽可能的消去0或无穷因子,再用极限运算法则或连续函数极限的求法。

例1
image-20200401173229962
例2
image-20200401174147992
例3
image-20200403145442719
例3
image-20200403151532719
image-20200403151554964
例4
image-20200408113236261
例5

方法1根式有理化,方法2等价无穷小替换

image-20200409083319678
例6
image-20200409135232993
image-20200409135256885
例7
image-20200409194230309

洛必达法则求极限

例1
image-20200409133844661

变量替换求极限

使用洛必达法则运算后,若式子反而比原来更复杂,应想到用变量替换。

例1
image-20200402120405369
image-20200402120441134
例2
image-20200403111022713
例3

本题用等价无穷小+变量替换

image-20200409213546435

直接凑成或者添加因子凑成两个极限的积或和

例1
image-20200401173605340
例2
image-20200402114333742
image-20200402114527807
image-20200402114546435

解此题还有一种方法见泰勒公式求极限的例1

例3
image-20200403211023057
image-20200403211111078
例4
image-20200403213629732
image-20200403213729881
image-20200403213752899
例5
image-20200408111935970

此题也可对sin部分直接做等价无穷小代换

例6
image-20200408114007744
例7
image-20200408115523423
image-20200408115612174

这道题先凑成两个极限的积,然后多次使用等价无穷小替换

例8

凑因子+洛必达+分子有理化

image-20200409082831059
image-20200409082922185
例9

凑因子+等价无穷小

image-20200409085232800
例10
image-20200409100235923
image-20200409100315223

注意这里分母凑成两项的和,原式的倒数可以拆成两项使用等价无穷小替换,所以这里的分母也可以使用等价无穷小替换

例11
image-20200409222303098
image-20200409222330272

这道题是凑因子+泰勒展开

提因子留常数加无穷小量

例1
image-20200409101909351

分子分母同除以因子求极限

image-20200402081042603

化为对数形式

例1
image-20200409094246742
例2

化为对数形式+等价无穷小替换

image-20200409095757376

\(\infty - \infty\)型求极限

通分求极限

image-20200403171132716

提因子变量替换求极限

image-20200402121244291
image-20200402121320123

\(0\cdot \infty\)型求极限

变量替换

例1
image-20200409102707278

\(1^\infty\)型、\(0^0\)型、\(\infty^0\)型求极限

凑自然对数e求极限

例1
image-20200401170425559
image-20200401170936001
image-20200401172806959
image-20200402083707944
image-20200403083438225
image-20200403110611438
image-20200408224008399
image-20200408225037250
image-20200409104906094
例2
image-20200402082646025
image-20200402082708438
例3
image-20200403172706329
image-20200403172800970
例4
image-20200409171545378
image-20200409171600823
例5
image-20200409211604416
例6
image-20200409212447319

化为对数形式求极限

例1
image-20200402084323430
例2
image-20200402120839749
image-20200402120904709
例3
image-20200408234911947

注意这里将分子化为了对数形式,而没有使用e的定义

例4
image-20200409105859946
例5
image-20200409113225514
例6
image-20200409174519319
image-20200409174546715
例7
image-20200409215730291
image-20200409215744373
image-20200409215814285
例8
image-20200409221224869

未定式求极限解不出时

根据相关定义求极限

根据导数定义求极限

例1
image-20200407180321560
image-20200407180409240

根据定积分定义求极限

(分子齐,分母不齐 )或者(分母齐,分子不齐)用夹逼定理。

分子分母都齐次用积分。

例1
image-20200409151202090
例2
image-20200409152208272
image-20200409152229164
例3
image-20200409153829510

根据恒等变换求极限

例1
image-20200409134517685

夹逼定理求极限

(分子齐,分母不齐 )或者(分母齐,分子不齐)用夹逼定理。

分子分母都齐次用积分。

例1
image-20200401174942343
image-20200401175014552
例2
image-20200402084750299
image-20200402084816913
例3
image-20200402085514646
image-20200402085535719
例4
image-20200403152536694
例5
image-20200409140303145
image-20200409140348839
例6
image-20200409170034727
image-20200409170105074
例7
image-20200410110231206
image-20200410110246859
image-20200410110305106

泰勒展开求极限

例1
image-20200402114333742
image-20200402114409390
例2
image-20200403110311364
image-20200403110352803
例3
image-20200403113555560
image-20200403113625395
image-20200403113646457
例4
image-20200403170554784
image-20200403170623619
例5
image-20200403204104384
image-20200403204145802
例6
image-20200408211545241

可以使用泰勒展开+等价无穷小替换的方法:

image-20200408213707165

也可以分母有理化+等价无穷小替换

例6
image-20200408213558567
image-20200408214030306
例7
image-20200408222016266
image-20200408222044801
例8
image-20200409093413298
image-20200409093443187
例9
image-20200409170649212
image-20200409170726281
例10
image-20200409172653283
image-20200409172717891

本题也可以对分子使用和差化积公式+等价无穷小替换来做

例11
image-20200409214148998
image-20200409214207249
例12
image-20200409230443605
image-20200409230510176

带绝对值式子求极限

例1
image-20200409112205976
image-20200409112120006

微分中值定理求极限

例1
image-20200409231519931
image-20200409231535956

根据数列求极限

例1
image-20200410105341138
image-20200410105420203

已知极限求其他

已知极限求参数

例1
image-20200402112214648
image-20200402112246396
例2
image-20200402113452321
image-20200402113525609
例3
image-20200403153114432
image-20200403153241962
例4
image-20200403153832394
image-20200403153854869
例4
image-20200408111104713
image-20200408111133728
例5
image-20200409191806613
image-20200409191829180
例6
image-20200409232006207
image-20200409232026647
例7
image-20200409232901568
image-20200409232841333
例8
image-20200409233805730
image-20200409233825209
例9
image-20200409234117815
image-20200409234052074
例10
image-20200409234912572
image-20200409234848532
例11
image-20200409235700690
image-20200409235619618
image-20200409235636931
例12
image-20200410001000835
image-20200410000946751
例13
image-20200410075104792
image-20200410075125775

此题需要根据x的不同讨论极限值,然后根据连续性来做

已知极限求新极限

主要方法有:

1)想办法从待求极限中凑出已知极限,消去

2)根据已知极限得分子分母无穷小阶数高低关系,可以得到一些值

例1
image-20200409193221568
image-20200409193239734
image-20200409193254823
例2
image-20200409193556405
image-20200409193611134
例3
image-20200409205100252
image-20200409205045255
例4
image-20200409210151299
image-20200409210107234

比较无穷小阶数高低

泰勒展开后比较是比较方便的

例1
image-20200405164738198
image-20200405164836822
例2
image-20200405165911537
image-20200405165936116
image-20200405165953828
例3
image-20200409195624459
image-20200409195559699

比值求极限判断

例1
image-20200407155355560
image-20200407155410511
例2
image-20200407160756844
image-20200407160905949

证明极限存在与否

数列极限存在的证明

证明数列极限的6种方法

数列单调有界,则数列收敛,极限存在

极限为A代入递推式可得A

例1
image-20200402091535715
image-20200402091600412
例2
image-20200410081359063
image-20200410081320778
image-20200410081338100
例3
image-20200410082802166
image-20200410082738511

单调有界必收敛,设极限为A代入递推式可得A

反证极限不存在

例1
image-20200407161954527
image-20200407162022923
例2
image-20200407162803153
image-20200407162825711
image-20200407162859298
例3
image-20200410083730117
image-20200410083702402

极限函数的分段讨论

极限函数连续性的讨论

例1
image-20200410113551367
image-20200410113529804

间断点类型的判断

例1
image-20200402110419387
image-20200402110437703
image-20200402110455804
例2
image-20200402111129199
image-20200402111203728
例3
image-20200407181603111
image-20200407181640029
例4
image-20200407182428846
image-20200407182448155
例5
image-20200408111437487
image-20200408111459030
例6
image-20200410111350520
image-20200410111326945
例7
image-20200410114229983
image-20200410114206304
例8
image-20200410115032665
image-20200410115047463
例9
image-20200410115355897
image-20200410115302884
image-20200410115338182