高等数学-多元微分学习题

高等数学-多元微分学习题

考察多元函数定义、极限存在、连续性、可微、可偏导、泰勒定理

多元函数的定义
例1
image-20200702122423759
例2
image-20200702122611230
偏导数的定义

偏导数是把多元函数其中一元看作变量,其他元看作常数后,求函数的变化率(求导)

例1
image-20200709144415604
image-20200709144432350
例2
image-20200710163615194
image-20200710163631402
例3
image-20200710231400530
image-20200710231418304
image-20200710231429789
例4
image-20200711000314135
image-20200711000327726
image-20200711000344744
例5
image-20200713145337218
例6
image-20200713145652539
image-20200713145725465
例7
image-20200713162205205
image-20200713162250977
极值的定义
例1
image-20200710232139022
image-20200710232158542
例2
image-20200713175333243
例3
image-20200713180142424
image-20200713180435932
例4
image-20200714171451504
连续不一定可偏导,可偏导不一定连续
例1 连续不一定可偏导,可偏导不一定连续
image-20200711093916297
image-20200711093943298
可微必连续
例1 证明可微必连续

image-20200701161537267

可微必可导
例1 证明可微必可偏导

求证:如果函数 \(z=f(x, y)\) 在点 \((x, y)\) 可微分,那么该函数在点\((x, y)\)偏导数 \(\frac{\partial z}{\partial x}\)\(\frac{\partial z}{\partial y}\) 必定存在 \(,\) 且函数 \(z=f(x, y)\) 在点 \((x, y)\) 的全微分为\(\mathrm{d} z=\frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y\)

image-20200701153847161
例2 可微必可偏导
image-20200711002100508
image-20200711002115138
连续可偏导必可微
例1 证明连续可偏导必可微
image-20200701160132385
image-20200701160157106
例2
image-20200713122053068
连续性、可偏导、可微的判断

连续性判断: 用连续定义判断:求该点处的极限,若极限值=对应点值,则连续。否则存在某路径极限值\(\neq\)对应点值,在该点不连续。

可偏导性的判断: 用偏导数的定义判断/求偏导数

可微的判断: 1)可微的定义判断 2)函数连续可偏导必可微 3)可微必可偏导、可微必连续的逆否命题:不可偏导一定不可微、不连续一定不可微

例1 函数连续性、可偏导性、可微的判断
image-20200711094459424
image-20200711094523571
例2 函数连续性、可偏导性、可微性的判断
image-20200711094918489
image-20200711094933694
image-20200711094948922
例3 函数连续性的判断
image-20200712233234132
例4 函数连续性、可偏导性的判断
image-20200712234029517
image-20200712234115590
例5 函数连续性、可偏导性、可微性的判断
image-20200713121706344
image-20200713112654421
例6 可微的判断
2020-7-13-001
例7 可微的判断
2020-7-13-002
例8 可微的判断
image-20200713143156817
image-20200713143240883

二元函数泰勒定理

例1
image-20200714173833094

极限的证明与计算

例1
image-20200627234136112
例2
image-20200627234814941
例3
image-20200709115331124
image-20200709115355220
例4
image-20200710153926439
image-20200710154008168
例5
2020-7-12-001

偏导数的计算

普通多元函数偏导数的计算
例1
image-20200630193622716
例2
image-20200630193722483
例3
image-20200630194820210
例4
image-20200710154605029
image-20200710154631336
例5
image-20200710163046837
image-20200710163102165
例6
image-20200710170255824
image-20200710170316137
例7
image-20200711100253125
image-20200711100317734
例8
image-20200712233907028
例9
image-20200713144242620
例10
image-20200713144708235
多元复合函数偏导数的计算
例1
image-20200701200713256
例2
image-20200701201025937
例3
image-20200701201356400
例4
image-20200630195731232
image-20200630195748789
例5
image-20200630200109237
例6
image-20200630210624138
例7
image-20200630210717628
例8
image-20200630211047597
image-20200630211557621
例9
image-20200709115723584
image-20200709115812472
例10
image-20200709115841168
image-20200709115857916
例11
image-20200709115925231
image-20200709120026906
例12
image-20200709120054695
image-20200709120109524
image-20200709120119794
例13
image-20200709142509529
image-20200709142521539
例14
image-20200709143454804
image-20200709143509307
例15
image-20200709154525460
image-20200709154545305
例16
image-20200709155415509
image-20200709155447245
例17
image-20200709160119364
image-20200709160139480
例18

注意一下这里偏导数代入的是不同的值

image-20200709173236549
image-20200709173254867
例19

与变限积分函数复合,求偏导

image-20200709174135042
image-20200709174240062
例20
image-20200709234842860
image-20200709234859286
image-20200709234911899
例21
image-20200710164338334
image-20200710164317757
例22
image-20200711000042513
image-20200711000059017
例23
image-20200711021616926
image-20200711021632092
例24
image-20200711095417822
image-20200711095435151
例25
image-20200711100817437
image-20200711100836952
例26
image-20200711101447402
image-20200711101524524
例27
image-20200711142518827
image-20200711142540183
例28
image-20200711145058043
image-20200711145114756
例29 换元/换坐标系
image-20200711174231552
image-20200711174416018
例30 换元/换坐标系

拉普拉斯算子在直角坐标系与柱坐标系中的转换

参考:拉普拉斯算子的百度百科

高数同济第七版P82的证明:

image-20200704084022493

image-20200704084151382

还有csdn上博主的证明(与高数同济7的证明类似):https://blog.csdn.net/u013102281/article/details/70800631

例31
image-20200713145045588
image-20200713145111578
例32 换元求偏导
image-20200713151645364
例33
image-20200713151858650
image-20200713151924146
例34
image-20200713154407255
例35
image-20200713154521245
例36
image-20200713154634020
例37
image-20200713154828736
例38
image-20200713155004931
image-20200713155029885
例39
image-20200713155411573
image-20200713155430337
image-20200713155500516
例40
image-20200713155710640
例41
image-20200713164313638
image-20200713164329698
多元隐函数及方程组的偏导数的计算
例1
image-20200701212558284
例2
image-20200701212659511
image-20200701212735480
例3
image-20200701212826072
image-20200701212911399
例4
image-20200709174823501
image-20200709174847696
例5
image-20200710152612800
image-20200710152657856
image-20200710152709808
例6
image-20200710153357691
image-20200710153415151
例7
image-20200710165737474
image-20200710165753162
例8
image-20200710224305058
image-20200710224325962
例9
image-20200711144441151
image-20200711144456888
image-20200711144509027
例10
image-20200711153505138
image-20200711153526825
例11
image-20200711161144323
image-20200711161210227
例12
image-20200711163849897
image-20200711163919111
例13
image-20200711165501946
image-20200711165515724
例14
image-20200713164500200
例15
image-20200713164614010
例16
image-20200713170815177
例17
image-20200713171146400
image-20200713171208604
例18
image-20200713172355080
image-20200713172420207
例19
image-20200713172633692
image-20200713172657470
例20
image-20200713172803624

全微分的计算

已知函数或隐函数求全微分

求多元函数的全微分,可以对函数两边取微分,直接得全微分。 如果是多元隐函数,或者方程组,可以对方程两边求各自由元的偏导数。利用偏导数得全微分。

例1
image-20200701160321599
例2
image-20200701160424316
例3
image-20200701160500466
例4
image-20200710171131701
image-20200710171144572
image-20200710171201393
例5
image-20200710174148525
image-20200710174205081
例6
image-20200710190655625
image-20200710190627751
例7
image-20200711161935902
image-20200711161957276
例8
image-20200713144527388
例9
image-20200713164912265
image-20200713164941986
image-20200713165017710
例10
image-20200713165329798
image-20200713165356281
image-20200713165427769
已知部分偏导信息求全微分
例1
image-20200710231039990
image-20200710231054533
已知极限求全微分
例1
image-20200709141641366
image-20200709141659190
已知全微分求参数
例1
image-20200713151304137

多元微分学代数应用:求多元函数极值

极值/最值问题,其实就是最优化问题

注意:极值问题,可能取值的的位置,包括驻点、不可导点、边界点

无条件极值的定义域为开区域考虑的是定义域内的驻点是否取极值条件极值多了约束,考虑的是有约束的情况下是否取极值。(如果约束正好是对应无条件极值的边界,则条件极值考虑的是边界点是否取极值

例如\(f(x, y)\) 在区域 \(D=\left\{(x, y) \mid x^{2}+4 y^{2} \leqslant 4\right\}\) 上的极值/最值。 可以拆成两部分来求: 在区域 \(D_1=\left\{(x, y) \mid x^{2}+4 y^{2} < 4\right\}\) 上找到所有的驻点判断是否取极值(求非条件极值) 在区域 \(D_2=\left\{(x, y) \mid x^{2}+4 y^{2} = 4\right\}\) 上,即给定约束\(x^{2}+4 y^{2} = 4\)的条件下,求函数的极值(求条件极值)

实际问题中,很多问题只在开区域内取最值,这个时候,可以不考虑在边界上取极值的情况(不用考虑条件极值)

无条件极值

无条件极值要求定义域为开区域

例1
image-20200702141609968
image-20200702141658206
image-20200702141724267
例2
image-20200702161848747
例3
image-20200702175100751
image-20200702175142248
例4
image-20200709145620862
image-20200709145647649
例5
image-20200710004826182
image-20200710004844257
例6
image-20200711175523494
image-20200711175542673
image-20200711175556778
例7
image-20200713174057577
例8
image-20200713174313120
image-20200713174444313
例9
image-20200713174830286
image-20200713174845204
image-20200713174923357
条件极值
例1
image-20200702142508895
image-20200702142300367
例2
image-20200702145537603
image-20200702145744521
image-20200702153214607
image-20200702153235382
image-20200702153315765
image-20200702153506463
例3
image-20200710014254265
image-20200710014312491
例4
image-20200711181129008
image-20200711181146986
例5
image-20200711181341127
image-20200711181403270
例6
image-20200714094854267
例7
image-20200714095236251
例8
image-20200714095257751
例9
image-20200714095619978
例10
image-20200714095639483
例11
image-20200714100156436
image-20200714100220455
image-20200714100235332
例12
image-20200714101350571
image-20200714101413487
例13
image-20200714102547365
image-20200714102604930
例14
image-20200714104559159
image-20200714104623138
image-20200714104643751
例15
image-20200714110123747
image-20200714110146199

多元微分学几何/向量分析应用:

空间曲线切向量和曲面法向量

空间曲线切向量的计算

切向量为\((x_t^\prime, y_t^\prime, z_t^\prime)\)或者\((1,\frac{dy}{dx}, \frac{dz}{dx})\)

参考答案是代隐函数方程组求偏导的Jacobi公式。实际上,求解过程一般就是解\(\frac{dy}{dx}, \frac{dz}{dx}\)的线性方程组的过程。

例1
image-20200710000637459
image-20200710000906166
空间曲面法向量的计算

空间曲面\(F(x,y,z)\)上任一点法向量为\((F_x,F_y,F_z)\)

例1
image-20200710003635901
image-20200710003714077
例2
image-20200710225148524
image-20200710225203730
例3
image-20200710225711507
image-20200710225733691
例4
image-20200714171630294
例5
image-20200714172346614
image-20200714172406509
image-20200714172426559
例6
image-20200714172716526
image-20200714172733799
例7
image-20200714173030959
例8
image-20200714173216173

向导数与梯度的计算

方向导数的计算

(方向导数是个值哦,不是向量;只是因为和梯度联系紧密,放到了这里)

例1
image-20200709150645947
image-20200709150733278
image-20200709150806992
例2
image-20200714145005840
例3
image-20200714145208186
image-20200714145231469
例4
image-20200714145523955
梯度的计算
例1
image-20200709151252431
image-20200709151310235
例2
image-20200711002502273
image-20200711002516936
例3
image-20200714150327874
image-20200714150354285
image-20200714150415782
例4
image-20200714170902723
image-20200714170922899