高等数学-多元积分学-重积分习题

高等数学-多元积分学-重积分习题

考察重积分的定义与性质

考察重积分的定义

例1
image-20200807112011942
image-20200807111955188
例2
image-20200807112421044
image-20200807112433583

考察重积分的性质

考察积分区域对称性与被积函数奇偶性

例1
image-20200807113457486
image-20200807113437559
例2 这道题凑了另一半出来,就比较有灵性了
image-20200808095110758
image-20200808095127225
例3 关于y=x对称的一道题
image-20200809111942648
image-20200809111926326

考察二重积分的中值定理

例1
image-20200808165259530
image-20200808165348010

重积分比较大小

例1
image-20200808201135688
image-20200808201208106

重积分的计算

变换积分次序

不变换积分次序无法计算的情形: \(x^{2 n} e^{\pm x^{2}} d x\) \(e^{\frac{1}{x}} d x\) \(\sin \frac{1}{x} d x\) \(\cos \frac{1}{x} d x\)

例1
image-20200807141218819
image-20200807141205031
例2
image-20200807164823663
image-20200807164806260
例3
image-20200808114716217
image-20200808114727891
image-20200808114742281
例4
image-20200808131549802
image-20200808131604097
例5
image-20200808132216867
image-20200808132232962
例6
image-20200808171933771
image-20200808171947235
例7
image-20200808203413113
image-20200808203430828
例8
image-20200808204323235
image-20200808204346893
例9
image-20200808210128808
image-20200808210143227

在直角坐标系计算重积分

直接在直角坐标系计算重积分

例1
image-20200807143539660

image-20200807143600156image-20200807143610392

例2
image-20200807171007515
image-20200807170936962
image-20200807170950293
例3
image-20200807182220512
image-20200807182201164
例4
image-20200808092457469
image-20200808092438239

注:此题也可在求坐标系中求解

例5
image-20200808130929748
image-20200808130944322
例6
image-20200808173243560
image-20200808173302022
例7
image-20200808202817098
image-20200808202829904
例8
image-20200808211859465
image-20200808211913442
例9
image-20200808225559762
image-20200808225613294
例10
image-20200809090150590
image-20200809090249180
例11
image-20200809093415467
image-20200809093448512
image-20200809093504927
例12
image-20200809110751106
image-20200809110807981

积分区域边界是参数方程形式,计算重积分

例1
image-20200808090031368
image-20200808090018933

转换到极坐标系计算重积分

某些二重积分,满足: 积分区域D的边界用极坐标方程表示比较简单(主要), 被积函数用极坐标变量\(\rho, \theta\)表示比较简单(次要), 这个时候,我们可以考虑用极坐标来计算二重积分。

例1
image-20200807140723483
image-20200807140706285
例2
image-20200807170117432
image-20200807170059015
例3
image-20200807173443870
image-20200807173430849
例4
image-20200807233331187
image-20200807233352058
image-20200807233409354
例5
image-20200808083018706
image-20200808083034747
例6
image-20200808175340505
image-20200808175320917
例7
image-20200808201343854
image-20200808201358347
例8
image-20200808201844698
image-20200808201854877
image-20200808202438548
例9
image-20200808221425919
image-20200808221440158
image-20200808221957839
例10
image-20200808221835810
image-20200808221934990
例11
image-20200808223148065
image-20200808223204198
例12
image-20200809091532081
image-20200809091513593
例13
image-20200809095220571
image-20200809095236073
例14 此题比较考验功底
image-20200809102840745

image-20200809102949023

在直角坐标系中求解,注意换元法的使用。 在极坐标系中求解,注意叠加法,可以叠负的(即相减)

例15
image-20200809103642623
image-20200809103624277
例16
image-20200809233928592
image-20200809233948247
例17
image-20200809234045293
image-20200809234055876
例18
image-20200809234645064
image-20200809234712560

此题转换到球坐标系更简单

转换到柱坐标系求重积分

例1
image-20200808110012330
image-20200808105958160
例2
image-20200809234147640
image-20200809234212111
image-20200809234225390

其实此题转换到球坐标系求重积分更简单。

例3
image-20200809234350683
image-20200809234413085
例4
image-20200809234459276
image-20200809234526648

转换到球坐标系中球重积分

例1
image-20200809234911133
image-20200809234939147
例2
image-20200809235009429
image-20200809235040062

重积分应用

几何应用

体积

例1
image-20200807180935913
image-20200807180957578

物理应用

质心

例1
image-20200807180324733
image-20200807180346090